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ASYMPTOTIC THEORY OF A WAVE PACKET IN A BOUNDARY LAYER ON A PLATE* 

O.S. RYZHOV and I.V. SAVENKOV 

The propagation of a wave packet generated by a point source in a boundary 
layer on a flat plate is considered. The fluid is assumed to be incom- 
pressible, and the distance from the leading edge oftheplate is chosen to 
be so large, that the Reynolds number can be assumed to tend to infinity. 
The field of perturbed motion is constructed using the framework of the 
linearized theory of the boundary layer with selfinduced pressure, with 
help of expansions in Laplace integrals with respect to time and Fourier 
integrals with respect to two spatial variables. The saddle-point method 
is used to calculate the inverse transforms. 

The pulsating motion of the fluid in the wave packet (laminar vortex spot) is character- 
ized by a continuous frequency spectrum. The other special property of the wave packet is 
that the oscillations are modulated already in the linear stage of its propagation, and thanks 
to this the amplitude has a sharp maximum at the centre of the perturbed region. The mutual 
interaction of the wave with continuous distribution of frequencies and wave lengths means 
that the spectrum of combinative tones is also continuous. The data from the experiments 
where several isolated harmonics were superimposed /l/**(**Kazanov Yu.S., Kozlov V.V. and 
Levchenko V.Ya., Experiments on non-linear wave interaction in a boundary layer. Preprint 16, 
Novosibirsk, In-t teoret. i prikl. mekhaniki, SO AN SSSR, 1978.) show that when the oscillation 
amplitude increases and the non-linear stage of the process is reached, it is the amplitude 
of the combination tones that grows most rapidly. The amplitude-of the fundamental harmonics 
grows more slowly. This leads one to the conclusion that the transition from laminar to 
turbulent flow of the fluid must occur within the wave packet very violently. Indeed, the 
measurements in /2/ show that the non-linear amplification of the originally monochromatic 
Tollmien-Schlichtfng (TS) wave from the unstable frequency range acccunpanied by the appearance 
of turbulent pulsations, lasts mu& longer than the explosive collapse of the wave packet and 
its transformation into a turbulent spot. 

It is very propable that turbulent spots develop from the wave packets at the end of the 
non-linear stage of the laminar motion /3, 4/. This assumption is reinforced by the definite 
resemblance, mentioned in /5/, betweentheisolated spot in laminar flow and a laminar wave 
packet investigated in /6/. The pulsations occurring within the spot in the frequency range 
inherent in the selfexciting TS waves strenghten this resemblance. 

1. Equations and bdwdary conditions. In order to simplify the mathematical 
analysis of the wave packets, we shall assume that the Reynolds number R- =. Then the 
initial Navier-Stokes equations will be reduced asymptotically to the simpler Prandtl equations, 
with selfinduced pressure remaining to be determined /7-9/. In connection with the three- 
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dimensional non-stationary boundary layer in an incompressible fluid in a flat plate, the 
named equations state that /lo, 11/ 

Here t is the time, XrYtZ are the Cartesian spatial coordinates and u,u,w are the 
components of the velocity vector measured in a special dimensionless system of units. The 
matching conditions show that at the outer edge of the region in question 

u -y--t A (t,x,z),w-+ 0 as y- 50 (1.2) 

and the selfinduced pressure p is connected with the displacement thickness A by the relation 

We will assume that the perturbations are introduced into the 
of a localized impulse applied through a small hole in the plate. 

tl = LU = 0, v = 6~~ (t, x, z)wheny = 0 

boundary layer 
In this case 

by means 

(1.4) 

and the function r,, will be different from zero only for small t> 0 inside the circle 

r = 1/X" + 22 < To. Upstream from the source 

u-Y> p-+0 as x+--M (1.5) 

The boundary value problem formulated here models the experimental conditions very 
accurately, except for the fact that the measurements are carried out at moderate values of 
the Reynolds number /6/*.f*Gilev V.M., Kaganov Yu.S. and Kozlov V-V., Development of a three- 
dimensional wave packet in a boundary layer. Preprint 34. Novosibirsk, In-t teoret. i prikl. 
mekhaniki, SO AN SSSR, 1981). This means that only a qualitative, and not a quantitative 
comparison can be made between the theoretical results and experimental data. 

To obtain better agreement, we must turn to the system of linearized Navier-Stokes 
equations. This was attempted in /12/, but the reasoning behind the assumptions on which 
the paper was based remains open to doubt. The difficulties were analysed in /13/ where a 
simpler structure of a two-dimensional wave packet was discussed, which was generated by 
switching on a vibrator in the form of an infinite strip stretched along the z axis on the 
plate. 

Following /13/ and taking into account (1.2) and (1.5), we shall write 

(p, A, u - y, v, w) = 6 (p’, A’, u’, VI, w’) (1.6) 

and linearize the equations of motion of the fluid over the source amplitude. Eliminating the 
displacement thickness from (1.2) and (1.3) weobtain, as y-00, 

2. Integral transformations. Let us expand the new functions sought, introduced by 
means of (1.6), in Laplace integrals in time , and Fourier integrals in the spatial coordinates 
lying in the plane of the plate. We have 

[B(m,k,m),u(Y;o,k,m),v[Y;w,k, n),Z(Y;o,k,m)] = 

r e-m'dt f & f &+W+mz) x 

r3P, (t ,2, ;2, ctlE* Y, z), u’ (t, z, y, z), w’ (t, 5, y, z)] 

Substituting the above formulas into the linearized Eqs.(l.l) and taking into account 
the boundary conditions (1.4), (1.5) and (1.7), we obtain for the function transforms p,ii,H 
and W a system of ordinary differential equations. Integration of the system follows the 
scheme given in /14/ based on the limiting form of the Squire's transformation as R-+ 00. 



646 

With this purpose in 
wave number by means 

which can be used to 

mind we shall determine, for real k and m, the reduced frequency and the 
of the formulas 

w' = (k’/k)‘h, k’ = sign k 1 k 1’16 (k2 + m2p (2.1) 

obtain an expression for excess pressure in the form 

ca m 

p’=-& dm s s b-w= 
dkei(kr+mz) x -?- 

2ni s (ik)“*&, (a, k, m) 

b~oo (k* + m’+ F (o’,k’) 
eat dw (2.2) 

-m -m 

Here 3, is the transform of the source from (1.4), the quantity F is determined from the 
equations _ 

F = Q, (a) - Q (k’), 0 = o’ (ik’)+a = o (ik)-“8 

o== -I-l(Q), Z=iAi(z)dz, Q = (ik’)‘la 1 k’ 1 
52 

and Ai is the Airy function which tends exponentially to infinity in 
arg z < n/3. 

Equating to zero the denominator in the integrand in (2.2) we obtain 
relation 

@ (Q) = Q W 

connecting the complex frequency o with the wave numbers k and m of the 

(2.3) 

the sector --n/3< 

the dispersion 

(2.4) 

natural spatial 
oscillations of the boundary layer. Exactly the same relation is obtained in the limit as 
R-+ 00 for the frequency 61' and wave number k’ of the two-dimensional TS waves /13/. In the 
latter case, relation (2.4) has an enumerable number of roots 0,' (k’) = (ik’)“C&, (k') . only 
the first of these roots generates the unstable perturbations, since when 1 k’ I> k,’ = 1,0005, 
we have the inequality Re olrjk’)> u. 

Using definitions (2.1) for 0' and k’ and (2.3) for the invariant 62, we conclude that 
out of the whole collection of spatial oscillation modes, we can have the case when only the 
first of or (k, m) = (ik)‘N&(k’) will be unstable. Furthermore, when k and m are real, the 
inequality 1 Re a1 (k, m) I< 1 Re 61~ (k’) ) Jill hold by virtue of the inequality l k I< Ik’ I. 
Calculations carried out in /15/ have shown that positive maxima of the function Re aI’ 
exist at the points I k’ ( = k,‘* = 2,116 and I k’ I = k,‘* = 4,346, and the first of two pairs of 
points shown corresponds to the two-dimensional free TS waves with the largest amplitude in- 
crement over time. The spatial oscillations growth increments with m#O are smaller than 
Re ol' (k*‘*). 

3. Analysis of the inverse transforms. The first stage in evaluating the integrals 
in (2.2) consists in finding an appropriate expression fortheinverse Laplace transform. Just 
as was done in /15/ in the problem of the development of two-dimensional perturbations in a 
boundary layer, we can estimate the contribution to the solution of the sum of residues 
dependent on all roots of the dispersion relation beginning with the second root. The sum is 
of order o(t-") and the estimate is uniform in s-and s. This leads us to the conclusion that 
when the time is sufficiently long , the sum becomes insignificant as compared with the con- 
tribution of the residue associated with the first root 01 (k, m), since the amplitude of the 
wave packet described by it increases exponentially /13/. As a result, we have 

p' (t, 5, z) = Re Ip,' (t, 5, z)l 
*T m 

PC =- s c 
dm dk exp [CJI~ (k, m) t + iks + imz] x 

b 
k2C0 [uJ~(;, m). k,m] 

fk'ddQ,[Q,(k')]/dQ 

(3.1) 

In order to simplify the subsequent calculations we shall carry out_/l6/ the following 
operations on the variables of integration: change to polar coordinates k = pcosa, m = psina, 
-n/2< ar,<n/2, stretching of the radius vector p = SCOS-%, and trigonometric transformation 

c = arctg p, --oO < B < 30. In the new variables we have 

k’ = s, w1 (k, m) = wl’ (s) (1 + pz)-". 

and the integral from (3.1) will become 

1 - 
PC’ = 2nP s J (B* T, X) (* +d;*,%8,, 

-ca 
(3.2) 
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exp[o,'(s)T + isX] ds; T = (1 + fP)-“4, 

x = (1 + B’)“‘@ (5 + fk) 

Here the inner integral is of the same type as that appearing in the linear problem of 
the development of two-dimensional perturbations. 

Thus the solution of the auxiliary problem of two-dimensional perturbations formulated 
in terms of reduced variables T and X, occupies a central position in the process of con- 
structing a structure of the three-dimensional wave packet. A detailed analysis of this 
problem for moderate values of T and any V = X/T, was given in /13/ where a special example 
based on the ideas of the saddle-point method was used to calculate J. 

Let (p(s; V) = o,‘(s)+ isV. when V is arbitrary and fixed , the coordinates of the saddle 
points in the complex s plane satisfy the equation dqlds = do,‘/ds + iV = 0 whose solution 
s=S(V) splits into an infinite number of branches. Computations have shown that when 
T > 3, the large amplitude perturbations are concentrated in the central region 3,s < V< 
7.0. For such values of reduced time J can be calculated using the saddle-point method and 
the asymptotic form of this integral will be determined by the first branch S,(V) of the 
saddle points. We have /13, 17/ 

.7 = (+)“’ S12 [ 1 “’ ‘d”,:; ‘) I]-“’ exp [cp (S,; V) T + iI’,,] x (3.3) 

where rdl = rrl (V) is the angle between the positive direction of the s axis and the tangent 
to the line Imcp = const drawn through the point S,. The error in the value of J found 
using formula (3.3) does not, as a rule , exceed several percent /17/. The asymptotic form 
obtained is not uniform in fi. Indeed, when 1 p /+ CJJ and t is fixed, it loses its strength, 
since according to the third formula of (3.2) the reduced time T-, O-. 

In order to overcome this difficulty, we shall writep'in the form 

(3.4) 

The computations show that for sufficiently large values of t it is easy to choose a 
value oftheconstant PO. which will ensure that the contributions from the first and third 
integral on the right-hand side of (3.4) to p’ are small. As regards the second integral, 
the saddle-point method can again be used to obtain its estimate. The confirmation of the 
necessary conditions for 2 = 0 is trivial. 

Indeed, let 

rl, 0% v,* Vz) = (i + B')_'$ (S, (V); V), v = (i + fi*)-"n (V, + BV,) 
V, = z/t, v, = zlt 

Then in the present case the saddle point 8= 0 determined by the equation d*/dg=O will 
lie on the segment of the axis Imp= 0 which is the initial contour of integration in the 
complex B plane. In addition, we can confirm that the .maximum value of Reg on the whole 
contour of integration is reached at precisely the point @= 0. 

The conditions of applicability of the method become less obvious when z#O. However, 
an approximate expression for the second integral from the right-hand side of (3.4) can be 
obtained without resorting to an asymptotic analysis , since its values can be obtained 
numerically using any standard method, with a prescribed degree of accuracy relative to the 
known value of J. The calculations whose results are given below, were carried out within 
the framework of this approach. 

4. Application of the saddle-point method to the double integral. Although 
the pattern of oscillations of the fluid in a two-dimensional vortex spot can be reliably 
establishedusingformula (3.3), it is nevertheless useful to derive a similar formula for a 
spatially localized weve packet. In view of the difficulities mentioned above, we shall 
return to the initial expression in (3.1) , regarding it as a double integral instead of going 
into the analysis of the complex fl plane. 

Let us introduce the function 
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The coordinates of the saddle point in the complex k and m planes satisfy, for any 
fixed V, and V,, the following system of equations: 

(4.1) 

(4.2) 

which admits of a denuuierable set of solutions k = K (V,, V,), M = M (V,, Y,). When Y, = 0, 
we have M(T7,, 0) = 0. Also fi = 0, and therefore k = s, o1 (k, 0) = wl’ (s) and V, = V. Assuming 
that the functions in question are continuously depenaent on V, we conclude, using the form 
of (4.1), that in a sufficiently small neighbourhood of V, = 0 every solution of system 
(4.2) approaches, infinitely closely , one of the branches of the solutionof the equation 
dpfds = 0. In other words, for the first branch K,(V,,Vz) -+ s, (V,), Ml (V,, V,) -+ 0 ?is v, - 0. 

Taking into account the definitions (2.1) and (2.3) , we shall rewrite the system of 
EqS.(4.2) as fOllOWS: 

and add to it the dispersion relation (2.4). This yields a system of three equations for 
determining the quantities k,m and Q1, depending on the parameters V, and V,. Here the 
existence of the passage to the limit as V, + 0, plays a central part in organizing the 

iterative process. The saddle points K, (V,, V, + AVJ and 
Ml (V,, Vz + AVz) are obtained in the process together with the 

2 invariant &?,‘(V,, V,+ AV,) , by applying Newton's method to 
the previous approximations K1 (V,,, V,), M, (V,, V,) and SZP (V,, 

7 V,), and the first step in calculating K,(V,,AV,), M, (V,, AV,) 
and Q,* (V,, AVz) is based on the known solution K, (V,,O) = 

Sl (VJ, J~*(V,, 0) = 0 and n; (V,, 0) = 62,(&). The choice 

D 
4 5 

AV,= 0,1 ensures a rapid convergence of the process. After 
2-4 iterations, the unknowns are obtained to 4-6 significant 

Fig.1 
figures. The solid and dashed lines in Fig.1 show the results 
of calculating the level curves of the functions Rex (with 

the step of 0.1) and ImX (with the step n/2). 
Having established the distribution of the saddle points, we must consider the problem 

of the presence of singularities in the complex k and m planes. A full investigation would 
present a very complex problem even for two-dimensional perturbations /13, 171. It is 
precisely for this reason that the analysis of the complex fi plane was not carried out. 
However, the rapid convergence of the iterative process which was used to find the roots of 
the system of Eqs.(4.3) with dispersion Eq.(2.4), implies that when V, is not too large, no 
additional singularities will appear in the complex m plane (or they will be at a considerable 
distance from the saddle points). From this there follows the possibility of replacing, for 
any fixed V, and V,, the initial manifold over which the integration in (3.1) was carried 
out, with a manifold including the saddle point K,, Ml. If the maximum value of Aax on 
the deformed manifold is reached at precisely the point K,, M,, then the asymptotic form 
(3.1) will be expressed for sufficiently large t and finite V,,V,, in terms of the con- 
tribution from its integration along its closest neighbourhooo. In the case of two-dimensional 
motions the last condition holds within the range 3,5< V,C 7,0, corresponding to the central 
part of the perturbed region f17/, but in the case of a spatially localized wave packet its 
confirmation meets with great difficulties. 

oet us assume that the necessary condition stating that the function Rex reaches its 
maximum value on the deformed manifold, is satisfied at the point K,, Mr. Then we can write 
an appropriate representation for the excess pressure. If we -write 

?x (K1,J%: v,, V*) @X (Kl, Ml; v,, ',) 
8k= akam 

A= 
8% WI, ‘+k v,&> V,) 8% (Xl, Ml: v,. V,) 

amak Bin’ 

then, according to the general theory /18/ we have 
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Here K, = K, (V,, V,) and MI = M, (V,, VJ are assumed to have been found using the 
iterative process described above, and in fact 

52; (V,., V,) = 52, IK,’ (K,, MJI, K,’ = K, [i + (M,IK,)“l”‘* 

The selection of the necessary branches of the multivalued functions K,' andA'/a is most 
simply carried out according to the values of their arguments when .V, = MI = 0, in which 
case K,’ = K,, V,= V, and the asymptotic form of the integral (3.2) with the expression (3.3) 
for J together yield 

and rl = rl (VJ denotes the argument of S, (V,.), while I'bl = FE1 (VA is the angle between 
the direction of the abscissa and the tangent to the line Im$ = const drawn through the 
origin of coordinates in the complex fi plane. The extension of these branches into the complex 
k and m planes is carried out together with the determination of the coordinates of the saddle 
points and the invariant 8,. 

5. Results of computations. For large values of t, influence on the behaviour of the 
solution P' (t, 2, 2) is mainly exerted by the exponential factor on the right-hand side of 
(4.4), while the inverse transform 6,[01 (K,, Ml), K,,M,l plays a much smaller part in the 
formation of its structure. The first of the named quantities represents a universal character- 
istic of a boundary layer on a plate, and changes with the form of the source of perturbations. 

To confirm the assertion made, we calculated the central region of the wave packets 
generated either by an instantaneous point source , or by sources spread over space and time. 
The jet of fluid blown into the boundary layer was specified, respectively, either as L+= 
6(t)6(+5(~)(6 (is the Dirac delta function), or as up = t'e-'cos (nzl%)cos @z/2), --i < z < 1, -1 < z < i. 
The results for both types of sources show no qualitative differences (in the limit as t-w, 
the statement becomes trivial). Thus it is sufficient to quote only the basic characteristics 
of the oscillations in the fluid caused by the instantaneous action of an infinitely thin jet. 

Both methods described above were used to control the computational data. The pressure 
calculated according to formula (3.2) where the value of J was obtained using (3.3), was 
compared with that given by relation (4.4). It was found that the differences were of the 
order of several percent, provided that t>5, i.e. the saddle-point method applied to wave 
packets localized in space, gave approximately the same accuracy as in the case of two- 
dimensional perturbations /17/. 

Fig.2 shows in solid lines the amplitude isolines Ip,’ (t,x,z) 1 of the envelope of the 
excess pressure peaks (with the step of 0.2), normalized to the quantity po’ = 45,55. The 
dashed lines represent the geometrical sites of the points where p‘ = 0 (every second curve 
is shown). In this example t = 5 and u0 = 6 (t)6(x)6 (z)(6 (is the Dirac delta function). 

The strong similarity between the solid and dashed lines of Fig.1 and 2 leads us to the 
conclusion that the behaviour of the solution p’(t,z,z) is substantially affected only by 

exp (xt), while the weight multiplier KIZ (K12 f M,2)-'~&'@.D [!&"]/dQ and the image C0 [w, (K,, 

M,), K,, M,l of the source do not materially affect the properties of the oscillations. 

Fig.2 Fig.3 

Indeed, the distribution of the amplitude I~~‘(f,z,z) I depends almost completely on 
ezP IHe VI, at the same time as the form of the wave fronts with p’= 0 is determined by 
exp Ii Im xtl. Near the centre of the wave packet the amplitude isolines tend asymptotically to 
the ellipses and take a more complex forminaccordance with the general theory /19/, but in 
the direction towards the periphery. 

The distribution of the oscillations along the central line z = 0 (Fig.3 is qualitatively 
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1 

u 

-1 

Fig.5 

the same as in two-dimensional perturbations /13, 17/. This is explained by the fact that 
x (K,, 0; V,,O)= cp(S,(V); 01, and K, = S,, V, = V. OII moving away from the central line the 
fronts fold back, but Fig.2 shows that the foldback is small compared with the corresponding 
experimental data available from /6, 20/. This implies that the number of oscillations in 
the transverse direction should be considerably smaller than that in the longitudinal direction. 
Direct calculations (Fig.4 where X = 22,5) show that the number is equal to 2-3 only. Fig.5 
(the isolines p'!&‘), offer a more detailed insight into the character of the wave fronts, and 
also shows good qualitative agreement with the results of the measurements given in /20/. 

We find, that within the framework of the proposed asymptotic analysis of a freely self- 
interacting boundary layer where the Reynolds number R-CO, the largest amplitude of the 
oscillations within the wave packet is attained on the central line z = 0, and the perturbations 
do not become forked as long as the linear stage of their propagation persists. At sufficiently 
large distances from the source the size of the perturbed region increases with time. A 
half-angle can be shown in the apex of the sector, within which the wave packet propagates. 
Assuming that the amplitude of the oscillations at the periphery of perturbed region is 10% 
of the maximum amplitude at its centre , we arrive at the approximate value of lS" for the 
angle in question. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

The authors thank E.D. Terent'yev for valuable 

REFERENCES 

discussions. 

KACHANOV YU.S., KOZLW V.V. and LEVCHENKO V.YA., Non-linear development of a wave in a 
boundary layer. Izv. Akad. Nauk SSSR, MEhG, 3, 1977. 

GASTER M., On wave packets in laminar boundary layers, Proc. IUTAN Sympos. on Laminar 
Turbulent Transition. B. et all, Springer, 1980. 

WYGNANSKI I., SOKOLCV N. and FRIEDMAN D., On the turbulent "spot" in a laminar boundary 
layer, Y. Fluid Tech. 78, 4, 1976. 

GASTER M., On transition to turbulence in boundary layers, Proc. Sympos. on Transition and 
Turbulence. Univ. Wisconsin - Madison. 1980. N.Y.: Acad. Press, 1981. 

WYGNANSKI I., HARITGNIDIS J.H. and KAPLAN R.E., On a Tollmlen - Schlichting wave packet 
produced by a turbulent spot, J. Fluid Mech. 92, 3, 1979. 

GASTER M. and GRANT I., An experimental investigation of the formation and development of 
a wave packet in a laminar boundary layer, Proc. Roy. Sot. Ser. A. 347, 1649, 1975. 

NEILAND V.YA., On the theory of the separation of a laminar boundary layer in a supersonic 
stream. Isv. Akad. Nauk SSSR, MZhGI, 4, 1969. 

STEWARTSGN K. and WILLIAMS P.G., Selfinduced separation, Proc. Roy. Sot. Ser. A. 312, 1509, 
1969. 

MFSSITER A.F., Boundary-layer flow near the trailing edge of a flat plate, SIAM J. Appl. 
Math. 18, 1, 1970. 

10. SMITH F.T., SYKES R.I. and BRIGHTON P.W., A two-dimensional boundary layer encountering 
a three-dimensional hump, J. Fluid Tech. 83, 1, 1977. 

11. RYEHOV O.S., On a non-stationary three-dimensional boundary layer freely interacting with 
an external flow. PNN, 44, 6, 1980. 

12. GASTER M., A theoretical model of a wave packet in the boundary layer on a flat plate, 
Proc. Roy. Sot. Ser. A. 347, 1649, 1975. 



651 

13. RYZHOV O.S. and TERENT'YEV E.D., cm the transition mode characterizing the triggering of 
a vibrator in a subsonic boundary layer on a plate. PMM, 50, 6, 1986. 

14. ZHUK V.I. and RYZHOV O.S., On the stability of a freely interacting boundary layer. PMM, 
45, 3, 1981. 

15. TERENT'YEV E.D., The linear problem of a vibrator performing harmonic oscillations at 
supercritical frequencies in a subsonic boundary layer. PMM, 48, 2, 1984. 

16. CRAIK A.D.D., The development of wave packets in unstable flows, Proc. Roy. Sot. Ser. A. 
373, 1755, 1981. 

17. RYZHOV O.S. and TERENT'YEV E.D., On a method of generating wave packets in a boundary 
layer. Modern Problems in the Mechanics of Continuous Media, Moscow, MF'TI, 1985. 

18. FEFORYUK M.V., The Saddle-point Method. Moscow, Nauka, 1977. 
19. DRAZIN P.G. and REID W.H., Hydrodynamic stability. Cambridge Univ. Press 1981. 
20. VASUDEVA B.R., Boundary-layer instability experiment with localized disturbance, J. Fluid 

Mech. 29, 4, 1967. 

Translated by L.K . 

PMM U.S.S.R.,Vol.51,No.S,pp.651-656,1987 0021-8928/87 $lO.OO+O.OO 
Printed in Great Britain 01989 Pergamon Press plc 

THE PRESSURE ON A SPHERE WITH A DAMPING COATING WHEN 
A PLANE ACOUSTIC WAVE IS INCIDENT ON IT* 

L.E. PEKUROVSKII, V.B. PORUCHIKOV and YU.A. SOZONENKO 

In the problem on the interaction of an acoustic wave with a rigid sphere 
coated with a thin compressible layer /l/, the non-stationary pressure 
distribution on the sphere is found. Themethod of numerical inversion 
of the Laplace integral transform is used , together with asymptotic 
relations that hold in the case of a sufficiently thin coating. It is 
shown that the behaviour of the pressure is qualitatively different in 
the cases of a rigid sphere and a sphere with a coating. In the pressure- 
time dependence, successive series of oscillations are discovered, which 
are not seen with a rigid sphere, see /2, 3/. The pressure rise correspond- 
ing to the instant of interaction of the enveloping wave (the "Poisson 
spot" /4/) is displaced in time and in some cases exceeds twice the 
incident wave amplitude. 

1. Formulation of the problem. Laplace transform of the pressure. At the 
instant t = 0 let a plane acoustic wave of pressure pi, previously propagating through a 
homogeneous fluid at rest with initial pressure p,,density pO, and sound velocity cO, be in- 
cident on a rigid fixed sphere of radius a, coated with a thin damping layer of initial 
thickness ho, where h,< a. The origin of a system of spherical coordinates r,$,cp is at 
the centre of the sphere , the incident wave front is perpendicular to the s axisz(z = rcos cp), 
and the motion is in the negative direction of the axis. For simplicity, the incident wave 
is regarded as a step with a pressure drop pm 

We introduce the dimensionless pressure disturbances j and St, the time f, and coordinate 
r in accordance with the relations 

p_ P-PO Pi -PO 
PIII ’ Pi=-, i=+, FE+ 

P, 
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